Ocean Circulation Model Applications for the Estuary-Coastal-Open Sea Continuum

Author:

Murawski Jens,She Jun,Mohn Christian,Frishfelds Vilnis,Nielsen Jacob Woge

Abstract

Coastal zones are among the most variable environments. As such, they require adaptive water management to ensure the balance of economic and social interests with environmental concerns. High quality marine data of hydrographic conditions e.g., sea level, temperature, salinity, and currents are needed to provide a sound foundation for the decision making process. Operational models with sufficiently high forecasting quality and resolution can be used for a further extension of the marine service toward the coastal-estuary areas. The Limfjord is a large and shallow water body in Northern Jutland, connecting the North Sea in the West and the Kattegat in the East. It is currently not covered by the CMEMS service, despite its importance for sea shipping, aquaculture and mussel fisheries. In this study, we use the operational HIROMB-BOOS Model (HBM) to resolve the full Baltic-Limfjord-North Sea system with a horizontal resolution of 185.2 m in the Limfjord. The study shows several factors that are essential for successfully modeling the coastal-estuary system: (a) high computational efficiency and flexible grids to allow high resolution in the fjord, (b) an improved short wave radiation scheme to model the thermodynamics and the diurnal variability of the temperature in very shallow waters, (c) high resolution atmospheric forcing, (d) adequate river forcing, and (e) accurate bathymetry in the narrow straits. With properly resolving these issues, the system is able to provide high quality sea level forecast for storm surge warning and hydrography forecasts: temperature, salinity and currents with sufficiently good quality for ecosystem-based management. The model is able to simulate the complex spatial and temporal pattern of sea level, salinity and temperature in the Limfjord and to reproduce their diurnal, seasonal and interannual variability and stratification rather well. Its high computational efficiency makes it possible to model the transition from the basin-scales to coastal- and estuary-scales seamlessly. In total, The HBM model has been successfully extended, to include the complex estuary system of the Limfjord, and shows an adequate model performance with regards to sea level, salinity and temperature predictions, suitable for storm surge warning applications and coastal management applications.

Funder

H2020 European Research Council

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference32 articles.

1. Wind driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea.;Axell;J. Geophys. Res.,2002

2. MyOcean baltic sea monitoring and forecasting centre, conference: operational oceanography for sustainable blue growth: the seventh EuroGOOS conference, Lisbon;Buch;Proceedings of the Seventh EuroGOOS Conference,2014

3. Improvements in turbulence model realizability for enhanced stability of ocean forecast and its importance for downstream components.;Brüning;Ocean Dyn.,2020

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3