Passive Acoustic Monitoring Reveals Spatio-Temporal Distributions of Antarctic and Pygmy Blue Whales Around Central New Zealand

Author:

Warren Victoria E.,Širović Ana,McPherson Craig,Goetz Kimberly T.,Radford Craig A.,Constantine Rochelle

Abstract

Effective management of wild animal populations relies on an understanding of their spatio-temporal distributions. Passive acoustic monitoring (PAM) is a non-invasive method to investigate the distribution of free-ranging species that reliably produce sound. Critically endangered Antarctic blue whales (Balaenoptera musculus intermedia) (ABWs) co-occur with pygmy blue whales (B. m. brevicauda) (PBWs) around New Zealand. Nationally, both are listed as “data deficient” due to difficulties in access and visual sub-species identification. PAM was used to investigate the distributions of blue whalesviasub-species specific song detections in central New Zealand. Propagation models, incorporating ambient noise data, enabled the comparison of detections among recording locations in different marine environments. ABW detections peaked during austral winter and spring, indicating that New Zealand, and the South Taranaki Bight (STB) in particular, is a migratory corridor for ABWs. Some ABW calls were also detected during the breeding season (September and October). PBW calls were highly concentrated in the STB, particularly between March and May, suggesting that an aggregation of PBWs may occur here. Therefore, the STB is of great importance for both sub-species of blue whale. PBW detections were absent from the STB during parts of austral spring, but PBWs were detected at east coast locations during this time. Detection area models were valuable when interpreting and comparing detections among recording locations. The results provide sub-species specific information required for management of critically endangered ABWs and highlight the relative importance of central New Zealand for both sub-species of blue whale.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3