The Potential for Great Barrier Reef Regional Climate Regulation via Dimethylsulfide Atmospheric Oxidation Products

Author:

Swan Hilton B.

Abstract

Research related to the potential for coral reef-derived dimethylsulfide (DMS) oxidation products to regulate the regional climate of the Great Barrier Reef (GBR) according to the CLAW hypothesis is summarized in this mini review. The GBR has been indicated as a region of high DMS production where atmospheric emissions may be increased when corals are subject to environmental stresses associated with low tide. During low wind speeds over aerially exposed coral reefs, plumes of atmospheric DMS and new sulfate-containing nano-particle production under photo-oxidative conditions have been detected on the GBR. Hygroscopic growth of these particles in combination with coagulation and condensation processes could potentially provide a coral-mediated mechanism of new aerosol for seeding low-level stratocumulus clouds. Fine mode aerosol optical depth over GBR coral reefs has been correlated with low wind speeds and a coral stress metric formulated as a function of irradiance, water clarity, and tide height. This correlation has been proposed as a possible mechanism by which the GBR might alter the optical properties of the overlying atmosphere to attenuate local insolation leading to regional climate regulation. However, recent regional-scale aerosol-climate modeling indicates that the potential for GBR regional climate regulationviaDMS atmospheric oxidation products is weak under current anthropogenic conditions which have instigated mass coral bleaching events along the entire length of the GBR between 1998 and 2022. This increased bleaching indicates that DMS oxidation products are insufficient to regulate the regional climate of the GBR according to the CLAW hypothesis under current global warming conditions.

Funder

Southern Cross University

Australian Research Council

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3