Molecular Identification of Species Diversity Using Pelagic Fish Eggs in Spring and Late Autumn-Winter in the Eastern Beibu Gulf, China

Author:

Hou Gang,Chen Yanying,Wang Jinrun,Pan Chuanhao,Lin Jianbin,Feng Bo,Zhang Hui

Abstract

The Beibu Gulf is considered as one of China’s four major fishing grounds, although the substantial overexploitation of fisheries has led to the collapse of many fish stocks, and to changes to spawning grounds in recent decades. Classifying fish eggs is an important way to monitor the recruitment process and identify the spawning sites of fish. However, the lack of a basis for morphological identification and difficulties in correctly identifying fish eggs based on morphological characteristics has limited scientific studies. In the present study, we identified fish eggs using molecular detection of cytochrome c oxidase subunit I and cytochrome b fragments. Ichthyoplankton surveys were conducted in the spring and late autumn–winter of 2020 in the eastern Beibu Gulf. Among the DNA extracted from the 873 chosen fish eggs, we successfully obtained 541 high-quality cytochrome c oxidase subunit I sequences and 41 high-quality cytochrome b sequences. We successfully identified 212 fish eggs (36.4%) from 32 species; 291 eggs (50.0%) showed ambiguous species delimitation, and 79 eggs (13.6%) could not be identified. Among the identified species, we found 25 species in spring and 25 species in late autumn–winter, out of which 18 species occurred in both seasons. We also obtained high resolution photographs of fish eggs at the species level for further morphological analysis and identification. The present study confirms the efficacy of using molecular methods to identify fish species from eggs and provides valuable information for protecting the spawning ground of economically valuable fish and for managing fishery resources.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3