Abnormal high tides and flooding induced by the internal surge in Hiroshima Bay due to a remote typhoon

Author:

Jeong Jae-Soon,Lee Han Soo,Mori Nobuhito

Abstract

The Itsukushima Shrine is located in northern Hiroshima Bay in the Seto Inland Sea (SIS). This structure of great cultural value is preserved as one of the World Heritage Sites in Japan. The shrine was built seaside, 30 cm above the highest tide, to prevent it from submerging. However, from 2011 to 2019, the shrine was submerged four times during September due to internal surges. To study the abnormal tide event on 29 September 2011, a high-resolution numerical ocean circulation model was established using Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). Observed subtidal components of surface elevation in the northern part of the bay decreased due to northerly winds when the typhoon passed east off the bay. After 7–8 days of typhoon passage, the component increased abnormally in the northern part of the bay. Simulation results revealed that a destabilized density stratification by the typhoon winds most likely caused bay-scale internal waves. The internal wave developed after the typhoon passed and was caught from the kinetic energy filtered in the possible internal wave periods. The internal wave propagated southward after the typhoon passage and returned to the northern bay, causing the subtidal component to increase after 7–8 days. Sensitivity tests with various scales of the typhoon were performed, and the test results exhibited a positive relationship between the abnormal tide level and typhoon intensity to some extent. The results can be generally applied to a semi-closed bay or closed water body for internal wave generation and propagation under specific meteorological conditions for coastal protection and disaster prevention.

Funder

Kyoto University

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3