Gracilaria gracilis and Nannochloropsis oceanica, singly or in combination, in diets alter the intestinal microbiota of European seabass (Dicentrarchus labrax)

Author:

Ferreira Mariana,Abdelhafiz Yousri,Abreu Helena,Silva Joana,Valente Luisa M. P.,Kiron Viswanath

Abstract

Algae feeds and fish gut microbiota have been given importance in the past few years because of the necessity to rely on sustainable ingredients in aquafeeds and the link of host-associated microbes to organismal health. But little is known about the potential of algae, particularly of micro- and macroalgae combination, to shape the intestinal bacterial communities. Hence, in the present work, the 16S rRNA gene sequencing technique was employed to unravel the effects of the seaweed Gracilaria gracilis and the microalga Nannochloropsis oceanica - included either singly or in combination in the diets of European seabass - on the diversities and composition of the gut bacterial communities. Results indicated that 8% inclusion of either G. gracilis (GRA) or N. oceanica (NAN) led to a reduction in the gut microbial diversity. On the other hand, inclusion of the micro- and macroalga in a blend (NANGRA) mitigated these plausible effects on the intestinal bacterial communities. The core microbiota of European seabass was composed of both beneficial (Lactobacillus and Cetobacterium) and potentially pathogenic (Flavobacterium) bacteria. The GRA diet was associated with a lower abundance of carbohydrate degraders and also promoted the growth of bacteria capable of outcompeting fish pathogens (Sulfitobacter and Methylobacterium). On the other hand, the NAN diet led to a higher representation of the genus Bacillus, with probiotic potential, accompanied by a decrease in Vibrio, a genus encompassing several fish pathogenic species. These findings demonstrate the ability of micro- and macroalgae to modulate the gut microbiota of European seabass, with plausible implications to host gut homeostasis.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3