Maritime greenhouse gas emission estimation and forecasting through AIS data analytics: a case study of Tianjin port in the context of sustainable development

Author:

Xie Wenxin,Li Yong,Yang Yang,Wang Peng,Wang Zhishan,Li Zhaoxuan,Mei Qiang,Sun Yaqi

Abstract

The escalating greenhouse gas (GHG) emissions from maritime trade present a serious environmental and biological threat. With increasing emission reduction initiatives, such as the European Union’s incorporation of the maritime sector into the emissions trading system, both challenges and opportunities emerge for maritime transport and associated industries. To address these concerns, this study presents a model specifically designed for estimating and projecting the spatiotemporal GHG emission inventory of ships, particularly when dealing with incomplete automatic identification system datasets. In the computational aspect of the model, various data processing techniques are employed to rectify inaccuracies arising from incomplete or erroneous AIS data, including big data cleaning, ship trajectory aggregation, multi-source spatiotemporal data fusion and missing data complementation. Utilizing a bottom-up ship dynamic approach, the model generates a high-resolution GHG emission inventory. This inventory contains key attributes such as the types of ships emitting GHGs, the locations of these emissions, the time periods during which emissions occur, and emissions. For predictive analytics, the model utilizes temporal fusion transformers equipped with the attention mechanism to accurately forecast the critical emission parameters, including emission locations, time frames, and quantities. Focusing on the sea area around Tianjin port—a region characterized by high shipping activity—this study achieves fine-grained emission source tracking via detailed emission inventory calculations. Moreover, the prediction model achieves a promising loss function of approximately 0.15 under the optimal parameter configuration, obtaining a better result than recurrent neural network (RNN) and long short-term memory network (LSTM) in the comparative experiments. The proposed method allows for a comprehensive understanding of emission patterns across diverse vessel types under various operational conditions. Coupled with the prediction results, the study offers valuable theoretical and data-driven support for formulating emission reduction strategies and optimizing resource allocation, thereby contributing to sustainable maritime transformation.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference98 articles.

1. U.S.-Mexico cooperation on reducing emissions from ships through a Mexican emission control area: development of the first national Mexican emission inventories for ships using the waterway network ship traffic, energy, and environmental model (STEEM);Bandemehr;Office Int. Tribal Affairs EPA-160-R-15-001,2015

2. Random forests;Breiman;Mach. Learn.,2001

3. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping;Cariou;Transportation Res. Part D,2011

4. The holt-winters forecasting procedure;Chatfield;J. R. Stat. Soc.,1978

5. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014;Chen;Sci. Total Environ.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3