Shining Light on Data-Poor Coastal Fisheries

Author:

Exeter Owen M.,Htut Thaung,Kerry Christopher R.,Kyi Maung Maung,Mizrahi Me'ira,Turner Rachel A.,Witt Matthew J.,Bicknell Anthony W. J.

Abstract

Coastal fisheries provide livelihoods and sustenance for millions of people globally but are often poorly documented. Data scarcity, particularly relating to spatio-temporal trends in catch and effort, compounds wider issues of governance capacity. This can hinder the implementation and effectiveness of spatial tools for fisheries management or conservation. This issue is acute in developing and low-income regions with many small-scale inshore fisheries and high marine biodiversity, such as Southeast Asia. As a result, fleets often operate unmonitored with implications for target and non-target species populations and the wider marine ecosystem. Novel and cost-effective approaches to obtain fisheries data are required to monitor these activities and help inform sustainable fishery and marine ecosystem management. One such example is the detection and numeration of fishing vessels that use artificial light to attract catch with nighttime satellite imagery. Here we test the efficiency and application value of nighttime satellite imagery, in combination with landings data and GPS tracked vessels, to estimate the footprint and biomass removal of an inshore purse seine fishery operating within a region of high biodiversity in Myanmar. By quantifying the number of remotely sensed vessel detections per month, adjusted for error by the GPS tracked vessels, we can extrapolate data from fisher logbooks to provide fine-scale spatiotemporal estimates of the fishery's effort, value and biomass removal. Estimates reveal local landings of nearly 9,000 mt worth close to $4 million USD annually. This approach details how remote sensed and in situ collected data can be applied to other fleets using artificial light to attract catch, notably inshore fisheries of Southeast Asia, whilst also providing a much-needed baseline understanding of a data-poor fishery's spatiotemporal activity, biomass removal, catch composition and landing of vulnerable species.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3