A regional analysis of tide-surge interactions during extreme water levels in complex coastal systems of Aotearoa New Zealand

Author:

Costa Wagner,Bryan Karin R.,Stephens Scott A.,Coco Giovanni

Abstract

Tide-surge interaction (TSI) is a critical factor in assessing flooding in shallow coastal systems, particularly in estuaries and harbours. Non-linear interactions between tides and surges can occur due to the water depth and bed friction. Global investigations have been conducted to examine TSI, but its occurrence and impact on water levels in Aotearoa New Zealand (NZ) have not been extensively studied. Water level observations from 36 tide gauges across the diverse coast of NZ were analysed to determine the occurrence and location of TSI. Statistical analysis and numerical modelling were conducted on data from both inside and outside estuaries, focusing on one estuary (Manukau Harbour) to determine the impact of TSI and estuarine morphology on the co-occurrence rate of extreme events. TSI was found to occur at most sites in NZ and primarily affects the timing of the largest surges relative to high tide. There were no regional patterns associated with the tide, non-tidal residual, or skew-surge regimes. The strongest TSI occurred in inner estuarine locations and was correlated with the intertidal area. The magnitude of the TSI varied depending on the method used, ranging from -16 cm to +27 cm. Co-occurrence rates of extreme water levels outside and inside the same estuary varied from 20% to 84%, with TSI modulating the rate by affecting tidal amplification. The results highlight the importance of investing in a more extensive tide gauge network to provide longer observations in highly populated estuarine coastlines. The incorporation of TSI in flooding hazard projections would benefit from more accurate and detailed observations, particularly in estuaries with high morphological complexity. TSI occurs in most sites along the coast of NZ and has a significant impact on water levels in inner estuarine locations. TSI modulates the co-occurrence rate of extreme water levels in estuaries of NZ by affecting tidal amplification. Therefore, further investment in the tide gauge network is needed to provide more accurate observations to incorporate TSI in flooding hazard projections.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference55 articles.

1. Seas and swells throughout New Zealand : a new partitioned hindcast;Albuquerque;Ocean Model.,2021

2. Tide–surge interaction at the head of the bay of Bengal during cyclone aila;Antony;Reg. Stud. Mar. Sci.,2020

3. Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts;Arns;Nat. Commun.,2020

4. A UK best- practice approach for extreme sea-level analysis along complex topographic coastlines;Batstone;Ocean Eng.,2013

5. BeavanR. J. LitchfieldN. J. Vertical land movement around the New Zealand coastline: implications for sea-level rise, GNS science report 2012/292012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3