High-End Scenarios of Sea-Level Rise for Coastal Risk-Averse Stakeholders

Author:

Dayan Hugo,Le Cozannet Goneri,Speich Sabrina,Thiéblemont Rémi

Abstract

Sea-level rise (SLR) will be one of the major climate change-induced risks of the 21st century for coastal areas. The large uncertainties of ice sheet melting processes bring in a range of unlikely – but not impossible – high-end sea-level scenarios (HESs). Here, we provide global to regional HESs exploring the tails of the distribution estimates of the different components of sea level. We base our scenarios on high-end physical-based model projections for glaciers, ocean sterodynamic effects, glacial isostatic adjustment and contributions from land-water, and we rely on a recent expert elicitation assessment for Greenland and Antarctic ice-sheets. We consider two future emissions scenarios and three time horizons that are critical for risk-averse stakeholders (2050, 2100, and 2200). We present our results from global to regional scales and highlight HESs spatial divergence and their departure from global HESs through twelve coastal city and island examples. For HESs-A, the global mean-sea level (GMSL) is projected to reach 1.06(1.91) in the low(high) emission scenario by 2100. For HESs-B, GMSL may be higher than 1.69(3.22) m by 2100. As far as 2050, while in most regions SLR may be of the same order of magnitude as GMSL, at local scale where ice-sheets existed during the Last Glacial Maximum, SLR can be far lower than GMSL, as in the Gulf of Finland. Beyond 2050, as sea-level continue to rise under the HESs, in most regions increasing rates of minimum(maximum) HESs are projected at high(low-to-mid) latitudes, close to (far from) ice-sheets, resulting in regional HESs substantially lower(higher) than GMSL. In regions where HESs may be extremely high, some cities in South East Asia such as Manila are even more immediately affected by coastal subsidence, which causes relative sea-level changes that exceed our HESs by one order of magnitude in some sectors.

Funder

Ministère de la Transition écologique et Solidaire

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3