Effective “off-on” switch for fertility control in female zebrafish

Author:

Shi Shengchi,Zhang Yuqing,Huang Jianfei,Lou Qiyong,Jin Xia,He Jiangyan,Zhai Gang,Yin Zhan

Abstract

The implementation of a controllable sterility strategy is crucial for the commercialization of precise trait improvements in farmed fish using genome editing and sustainable development of fisheries. Our previous research has demonstrated that females deficient in pituitary gonadotropin luteinizing hormone β-subunit (lhβ) or gonadal steroidogenesis gene steroidogenic acute regulatory protein (star) exhibit sterility due to impaired oocyte maturation and ovulation. Nevertheless, the effective restoration of fertility in lhβ- or star-deficient females remains unsolved. This study has discovered that the administration of exogenous 17α,20β-dihydroxy-4-pregnen-3-one (DHP) at 100 and 300 μg/L for 6 h (from 02:00 to 08:00 a.m.) effectively restores the fertility of lhβ- or star-deficient females. Fertilized eggs from these mutant females can be raised without noticeable developmental defects for up to 3 weeks post-fertilization (wpf) compared to the wild-type (WT) control zebrafish. The increased expression levels of adamts9 and adam8b in lhβ- or star-deficient zebrafish females treated with DHP demonstrate a positive correlation with oocyte maturation and ovulation restoration. In contrast, exogenous DHP administration did not rescue the sterility phenotype observed in progesterone receptor (pgr)-deficient females. Building on our recent success in generating an all-female carp population through cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1)-depletion, our research presents a promising and effective strategy for an “off-on” switch for managing fertility in genome-edited cyprinids. The strategy would offer practical guidance and theoretical justification for developing “controllable fertility” in all-female fish, which would support the sustainable development of fisheries by promoting the use of novel biotechnologies in aquaculture in an eco-friendly manner.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3