Sediment-Derived Dissolved Organic Matter Stimulates Heterotrophic Prokaryotes Metabolic Activity in Overlying Deep Sea in the Ulleung Basin, East Sea

Author:

Hyun Jung-Ho,Kim Bomina,Han Heejun,Baek Yong-Jae,Lee Hyeonji,Cho Hyeyoun,Yoon Seok-Hyun,Kim Guebuem

Abstract

The effects of benthic dissolved organic carbon (DOC) flux on the dynamics of DOC in the deep continental margins (200 – 2000 m depth) is poorly understood. We investigated heterotrophic prokaryotes (hereafter bacteria) production (BP) and the bio-reactive properties of sediment-derived dissolved organic matter (SDOM) to elucidate microbially mediated cause-effect relationships regarding the rapid consumption of dissolved oxygen (DO) and accumulation of humic-like fluorescent DOM (FDOMH) in the deep-water column (750 – 2000 m depth range) of the Ulleung Basin (UB) in the East Sea. BP in the deep water (2.2 μmol C m-3 d-1) of the UB was among the highest reported for various deep-sea sites. The high DOC concentration (55 μM) likely supported the high BP seen in the deep-water column of the UB. Concentrations of DOC and C1 component of the FDOMH, which is indicative of microbial metabolic by-products, were 13-fold and 20-fold greater, respectively, in pore water than in the overlying bottom water, indicating that the sediment in the continental margins is a significant source of DOM in the overlying water column. Fine-scale water sampling revealed that BP near the sediment (0 – 30 m above the seafloor; 2.78 μmol C m-3 d-1) was 1.67 times higher than that measured in the water column above (30 – 100 m above the seafloor; 1.67 μmol C m-3 d-1). In addition, BP increased in the bottom water incubation amended with SDOM-containing pore water (PW). The results demonstrated that SDOM contains bio-reactive forms of DOM that stimulate heterotrophic microbial metabolism at the expense of oxygen in the bottom water layer. The accumulation of C1 component in both PW-amended and unamended bottom water incubation (i.e., without an extra DOM supply from sediment) further indicated that refractory DOM is produced autochthonously in the water column via heterotrophic metabolic activity. This explains in part the microbially mediated accumulation of excess FDOMH in the deep-water column of the UB. Overall results suggest that the benthic release of bio-reactive DOM may be of widespread significance in controlling microbial processes in the deep-water layer of marginal seas.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3