Marine Heatwaves, Sewage and Eutrophication Combine to Trigger Deoxygenation and Biodiversity Loss: A SW Atlantic Case Study

Author:

Brauko Kalina M.,Cabral Alex,Costa Natasha V.,Hayden Juliana,Dias Carlos E. P.,Leite Edilene S.,Westphal Renan D.,Mueller Carolina M.,Hall-Spencer Jason M.,Rodrigues Regina R.,Rörig Leonardo R.,Pagliosa Paulo R.,Fonseca Alessandra L.,Alarcon Orestes E.,Horta Paulo A.

Abstract

Marine heatwaves (MHWs) are a major concern worldwide due to their increasing impacts in recent years, and these extreme events may trigger deoxygenation of coastal waters affected by sewage and eutrophication. Here we investigate the combined effects of MHWs and nutrient enrichment on the water quality and biodiversity of the Bay of Santa Catarina Island (Brazil). We used historical (1994–2020) sea surface temperature data from satellites and in situ physical, chemical and biological parameters to assess temporal trends. Oxygen levels have been decreasing whilst phosphorus levels have been increasing in the bay. During the austral summer of 2020 a regional sea surface heatwave was detected by satellite, lasting for 9 days and coinciding with our research cruise. During this period, seawater temperatures reached 29.8°C and anoxia was detected for the first time in the bay. A decrease in macrobenthic and phytoplankton community richness correlated with decreases in oxygen both through time and towards more urbanized areas. Overall, poor wastewater treatment is a key stressor that combined with MHWs to degrade coastal waters. Mitigation strategies are needed to minimize the impact of MHWs, including improved sewage treatment, restoration and conservation of wetlands and the use of nature-based technologies to promote coastal ecosystem recovery.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3