Effects of temperature and photoperiod on growth, physiological, and behavioral performance in steelhead trout (Oncorhynchus mykiss) under indoor aquaculture condition

Author:

Ma Zhen,Zhang Jia,Zhang Xu,Li Haixia,Liu Ying,Gao Lei

Abstract

Light and temperature are necessary conditions for migratory fish. The assessment of fish physiology and behavior is important for identifying fish welfare, but also for the assessment of the optimal setting of recirculating aquaculture systems (RASs). This study aimed to explore the interactive effect of photoperiod and temperature on steelhead trout culture. Four treatments were set up with specific settings were as follows: a LP-LT group treated with 16L:8D and 12°C, a LP-HT group treated with 16L:8D and 16°C, a SP-LT group treated with 12L:12D and 12°C, and a SP-HT group treated with 12L:12D and 16°C. Growth performance, behavioral and physiological parameters were measured. Two indexes, locomotor activity and social interaction were used for behavioral analysis, and the results were applied to interpret the behavioral responses to the photoperiod and temperature stimulation in juveniles. The growth performances were significantly lower in treatments LP-LT and SP-LT. The treatment LP-HT had significantly higher growth performance than the other treatments, but no significant differences were noted in survival rate and coefficient of variation. The results of fish behavior indicated that the movement of juveniles should be primarily monitored at high temperatures or long photoperiods, and the state parameters should be primarily monitored at low temperatures or short photoperiods. The results of the physiological parameters showed that the recovery time from stress varied among different treatments. After 60 days of the experiment, superoxide dismutase and alanine aminotransferase dropped back to their initial level. The results of Na+-K+-ATPase showed that although the combined effect of photoperiod and temperature could advance the time of smoltification, it may result in poorer salt tolerance. Our findings underscore the importance of the interaction of photoperiod and temperature on steelhead trout culture. The outcome could provide guidance for the development of effective aquaculture systems.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3