Transcriptome Analysis of Turbot (Scophthalmus maximus) Infected With Aeromonas salmonicida Reveals a Direct Effect on Leptin Synthesis as a Neuroendocrine Mediator of Inflammation and Metabolism Regulation

Author:

Librán-Pérez Marta,Pereiro Patricia,Figueras Antonio,Novoa Beatriz

Abstract

Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a disease affecting numerous fish species worldwide. It is a highly pathogenic bacterium for turbot, whose farming production represents an important economic activity in several European countries and China. To better understand the response of this organism to A. salmonicida, we conducted RNA-Seq analysis of the head kidney from experimentally infected and uninfected turbot juveniles at 24 hours post-infection (hpi). As expected, among the differentially expressed genes (DEGs) between infected and uninfected fish, we observed the modulation of a multitude of immune-related genes but also a high representation of genes linked to metabolism. Interestingly, one of the most upregulated genes was that encoding the hormone leptin. Leptin is a multifunctional hormone/cytokine that has been shown to play roles in the immune system, stress response, food intake, metabolism and energy balance. We used recombinant human leptin to elucidate its role during infection with A. salmonicida in turbot (anorexigenic activity, ability to modulate metabolism and the immune response, and its effect on survival and bacterial load during infection). We found that the intraperitoneal administration of leptin was able to alter the response to the bacteria at the immune level, but especially at the metabolic level, which resulted in a higher survival rate without affecting the bacterial load. Based on this, we hypothesized that leptin could offer great potential as a therapeutic treatment during furunculosis outbreaks by reducing the impact of sepsis. Our results reveal the complex interplay between bacterial activity and the regulation of food intake, metabolism and inflammation.

Funder

Ministerio de Ciencia e Innovación

Ministerio de Agricultura, Pesca y Alimentación

Consellería de Economía, Emprego e Industria, Xunta de Galicia

Interreg

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3