Effects of Multiple Karenia brevis Red Tide Blooms on a Common Bottlenose Dolphin (Tursiops truncatus) Prey Fish Assemblage: Patterns of Resistance and Resilience in Sarasota Bay, Florida

Author:

Berens McCabe Elizabeth J.,Wells Randall S.,Toms Christina N.,Barleycorn Aaron A.,Wilkinson Krystan A.,Palubok Valeriy I.

Abstract

Red tide blooms caused by the toxic dinoflagellate Karenia brevis are natural disturbance events that occur regularly along Florida’s west coast, often resulting in massive fish kills and marine mammal, seabird, and sea turtle mortalities. Limited prior work on the ecological effects of red tides suggests they play an important role in structuring ecosystem dynamics and regulating communities, however specific effects on prey populations and potential alterations to predator-prey interactions are unknown. We surveyed the prey fish assemblage of a top marine predator, the common bottlenose dolphin (Tursiops truncatus), in shallow seagrass habitat in Sarasota Bay, Florida, during 2004–2019, collecting data on prey density, species composition, K. brevis cell densities, and environmental variables. Across eight distinct red tide bloom events, resistance, resilience, and the ecological effects on the prey assemblage varied depending on bloom intensity, season, and frequency. Prey assemblage structure showed significant and distinct short-term shifts during blooms independent of the normal seasonal shifts in prey structure seen during non-bloom conditions. Canonical correspondence analysis indicated a strong influence of K. brevis density on assemblage structure. Blooms occurring primarily in the summer were associated with less initial prey resistance and higher than average annual catch per unit effort (CPUE) 1–3 years following bloom cessation, with bloom frequency prolonging the time needed to reach higher than average annual CPUE. Regardless of season, recovery to pre-bloom prey abundances occurred within 1 year. Sample-based rarefaction and extrapolation indicated significant differences in prey diversity among summer bloom events. This study is a first step in identifying differences in resistance, resilience, and the ecological effects of multiple red tide bloom events of various temporal scales and intensity on a dolphin prey assemblage. Improved understanding of the influence of red tides on estuarine structural dynamics and function can better inform management, and potentially guide mitigation efforts post-bloom.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference83 articles.

1. Distance-based tests for homogeneity of multivariate dispersions.;Anderson;Biometrics,2006

2. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology.;Anderson;Ecology,2003

3. “Public health problems of red tides,” in;Baden;Handbook of Natural Toxins, vol 3: Marine Toxins and Venoms,1988

4. Toxicity of two toxins from the Florida red tide marine dinoflagellate, Gymnodinium breve.;Baden;Toxicon,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3