Yeast-extracted nucleotides and nucleic acids as promising feed additives for European sea bass (Dicentrarchus labrax) juveniles

Author:

Pelusio Nicole Francesca,Parma Luca,Volpe Enrico,Ciulli Sara,Errani Francesca,Natale Silvia,De Cesare Alessandra,Indio Valentina,Carcano Paolo,Mordenti Oliviero,Gatta Pier Paolo,Bonaldo Alessio

Abstract

Nowadays functional ingredients have a significant potential for improving current low fish meal (FM) aquafeed formulation in sustaining growth and enhancing animal robustness for Mediterranean aquaculture. Among them, nucleotides (NT) and nucleic acids (NA) drew attention for their application in the last two decades. NT are organic molecules involved in many life-supporting pathways, and are the building blocks of NA, which stand as genetic repositories. NT are naturally present in organic ingredients, and among them FM is known to be one of the highest NT sources. When this NT source is seriously limited, fish might be under the minimum NT requirements, especially in fast growing life stages of carnivorous species. Hence, a trial on European sea bass juveniles was carried out, testing two dietary FM levels (FM10, FM20 as 10% and 20% FM, respectively) supplemented with 500 mg kg-1 yeast-originate NT or NA dose over 80 days. Thereafter, fish were exposed to one week of sub-optimal thermal and dissolved oxygen condition (30°C and 4.0 mg/L O2) to further explore the effect of NT and NA inclusion on immune response and gut microbiome alteration. At the end of the growth period NT increased feed intake at both FM dietary levels. FM20 combined with NA and NT further improved growth performance, enhancing lipid efficiency and increased anti-inflammatory TGF-β. After sub-optimal environmental conditions both NT and NA exerted prebiotic functions on gut microbiome by promoting beneficial lactic acid bacteria such as Weissella and Leuconostoc. At the same time NT in 10% FM diet increased the abundance of Bacillus taxon. In conclusion, the combination of NT/NA included at 500 mg kg-1 was able to promote growth when included in 20% FM level, assuming higher nutritional NT requirement when combined with 10% FM. On the other hand, NT/NA added in 10% FM upregulate proinflammatory IL-1β and favor beneficial gut bacterial taxa.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3