Data-Limited Stock Assessment for Fish Species Devoid of Catch Statistics: Case Studies for Pampus argenteus and Setipinna taty in the Bohai and Yellow Seas

Author:

Han Qingpeng,Shan Xiujuan,Jin Xianshi,Gorfine Harry,Yang Tao,Su Chengcheng

Abstract

For many fish stocks, such as Pampus argenteus and Setipinna taty in China, size composition data are more accessible than catch data. Varied results can arise when different length-based stock assessment models are applied to these data, and fishery managers often need to reconcile conflicting estimates of population status. Superensemble modeling, a relatively recent innovation in fish stock assessments commonly used in other fields, may provide an effective solution to resolving uncertainties among the results from multiple length-based models. To verify potential for this approach to improve estimates of population status, we applied ensemble modeling to fit simulated data of P. argenteus and S. taty in the Bohai and Yellow Seas using predictions from a length-based integrated mixed effects (LIME) and length-based spawning potential ratio (LB-SPR) models as covariables in a superensemble model developed in this study. All simulation modeling of P. argenteus and S. taty in the Bohai and Yellow Seas was conducted using the operating model in the R package LIME. Initially, the LIME and LB-SPR performances were tested separately under three scenarios of fishing mortality and recruitment variability (“equilibrium scenario,” “endogenous scenario,” and “one-way base scenario”). Then, estimates of spawning potential ratio (SPR) were combined with the superensemble models (a linear model, a support vector machines, a random forest and a boosted regression tree). We trained our superensemble models with 80% of the simulated data and tested them with the remaining 20%. Our results showed that superensemble modeling substantially improved the estimates of SPR, with support vector machines performing the best at estimating population status: precision improved by 12.7% for S. taty and 8% for P. argenteus on average (namely, median absolute proportional error decreased by 0.127 and 0.08 on average) compared to the individual models. This finding has important implications for fisheries management in the context of species for which catch data are unavailable. Applying the size composition survey data, the results from support vector machines superensemble model suggested that neither S. taty nor P. argenteus in the Bohai Sea in 2019 are overfished, but the stock status of P. argenteus warrants vigilant monitoring.

Funder

David and Lucile Packard Foundation

Central Public-interest Scientific Institution Basal Research Fund, Chinese Academy of Fishery Sciences

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3