Author:
Owens Dwight,Abeysirigunawardena Dilumie,Biffard Ben,Chen Yan,Conley Patrick,Jenkyns Reyna,Kerschtien Shane,Lavallee Tim,MacArthur Melissa,Mousseau Jina,Old Kim,Paulson Meghan,Pirenne Benoît,Scherwath Martin,Thorne Michael
Abstract
The advent of large-scale cabled ocean observatories brought about the need to handle large amounts of ocean-based data, continuously recorded at a high sampling rate over many years and made accessible in near-real time to the ocean science community and the public. Ocean Networks Canada (ONC) commenced installing and operating two regional cabled observatories on Canada’s Pacific Coast, VENUS inshore and NEPTUNE offshore in the 2000s, and later expanded to include observatories in the Atlantic and Arctic in the 2010s. The first data streams from the cabled instrument nodes started flowing in February 2006. This paper describes Oceans 2.0 and Oceans 3.0, the comprehensive Data Management and Archival System that ONC developed to capture all data and associated metadata into an ever-expanding dynamic database. Oceans 2.0 was the name for this software system from 2006–2021; in 2022, ONC revised this name to Oceans 3.0, reflecting the system’s many new and planned capabilities aligning with Web 3.0 concepts. Oceans 3.0 comprises both tools to manage the data acquisition and archival of all instrumental assets managed by ONC as well as end-user tools to discover, process, visualize and download the data. Oceans 3.0 rests upon ten foundational pillars: (1) A robust and stable system architecture to serve as the backbone within a context of constant technological progress and evolving needs of the operators and end users; (2) a data acquisition and archival framework for infrastructure management and data recording, including instrument drivers and parsers to capture all data and observatory actions, alongside task management options and support for data versioning; (3) a metadata system tracking all the details necessary to archive Findable, Accessible, Interoperable and Reproducible (FAIR) data from all scientific and non-scientific sensors; (4) a data Quality Assurance and Quality Control lifecycle with a consistent workflow and automated testing to detect instrument, data and network issues; (5) a data product pipeline ensuring the data are served in a wide variety of standard formats; (6) data discovery and access tools, both generalized and use-specific, allowing users to find and access data of interest; (7) an Application Programming Interface that enables scripted data discovery and access; (8) capabilities for customized and interactive data handling such as annotating videos or ingesting individual campaign-based data sets; (9) a system for generating persistent data identifiers and data citations, which supports interoperability with external data repositories; (10) capabilities to automatically detect and react to emergent events such as earthquakes. With a growing database and advancing technological capabilities, Oceans 3.0 is evolving toward a future in which the old paradigm of downloading packaged data files transitions to the new paradigm of cloud-based environments for data discovery, processing, analysis, and exchange.
Funder
Government of Canada
Canarie
Canada Foundation for Innovation
Natural Resources Canada
Fisheries and Oceans Canada
Transport Canada
University of Victoria
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献