Microalgae-mediated tandem culture of shrimp and bivalve: an environmental and health co-benefits solution for phosphorus recovery and emission reduction

Author:

Ma Shuonan,Dong Xumeng,Luo Cheng,Zhao Chunpu,Xu Jilin

Abstract

Phosphorus (P) accumulation in aquaculture systems is damaging our environment beyond acceptable levels. Devising strategies to potentially recover P from aquaculture systems in a reusable bioresource form is paramount and aligns with circular economy policies. In this study, we constructed two culture models, monoculture (Mon) and tandem culture (Tan), using Exopalaemon carinicauda and Mercenaria mercenaria. By monitoring the performance of rearing organisms, P dynamic patterns, and pollutant emissions, we found that: i) Compared to the Mon system, the Tan system demonstrated no differences in the performance of E. carinicauda and M. mercenaria, suggesting that the Tan model was viable in terms of fishery yield; ii) P in the Tan system could be efficiently recovered and removed from water and sediment, as indicated by the lower phosphate concentration in water (0.01 mg L−1), and the decrease in labile P in surface sediment (from 0.04 to 0.02 mg L−1). A combination of assimilatory and dissimilatory processes, mediated by phototrophic (bait-microalgae) and heterotrophic organisms (bivalves), appeared to be the primary mechanism for P utilization and removal; iii) The Tan system reduced pollutant emissions four times lower than the Mon system due to its minimal tailwater discharge (10%, 230 L). The emissions of total P, phosphate, total organic carbon, ammonium, and chemical oxygen demand from the Tan systems were 19 mg m−2 d−1, 2 mg m−2 d−1, 2 g m−2 d−1, 38 mg m−2 d−1, and 11 g m−2 d−1, respectively, 1.3, 1.7, 1.4, 1.3, and 1.2 times lower than those from the Mon systems. The eco-friendly Tan culture model fully exploited the resources of pond culture, a solution with environmental and health co-benefits for P recovery and emission reduction.

Funder

Basic Public Welfare Research Program of Zhejiang Province

National Natural Science Foundation of China

Ningbo Municipal Bureau of Science and Technology

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference45 articles.

1. Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects. environ;Abdelfattah;Sci. Ecotech.,2023

2. Influence of variation in water temperature on survival, growth and yield of pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture;Abdelrahman;Aquac. Res.,2018

3. Bioremediation of aquaculture wastewater from Mugilcephalus (Linnaeus 1758) with different microalgae species;Andreotti;Chem. Ecol.,2017

4. AQSIQP. R. C. The specification for marine monitoring of China-part 4: seawater analysis (GB 17378.4–2007) (General administration of quality supervision, inspection and quarantine (Aqsiq) of the people’s republic of China (in Chinese)2007

5. Sensitivity analysis of the refinement to the Mann-Whitney test;Bin Othman;Sains Malays.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3