Invading the Occupied Niche: How a Parasitic Copepod of Introduced Oysters Can Expel a Congener From Native Mussels

Author:

Feis Marieke E.,Gottschalck Leo,Ruf Lena C.,Theising Franziska,Demann Felicitas,Wegner K. Mathias

Abstract

In species introductions, non-native species are often confronted with new niches occupied by more specialized natives, and for introduced parasites this conflict can be amplified because they also face novel hosts. Despite these obstacles, invasions of introduced parasites occur frequently, but the mechanisms that facilitate parasite invasion success are only rarely explored. Here, we investigated how the parasitic copepod Mytilicola orientalis, that recently spilled over from its principal host - the Pacific oyster Crassostrea gigas, managed to invade the niche of blue mussel Mytilus edulis intestines, which is densely occupied by its specialist congener, Mytilicola intestinalis. From field observations demonstrating invasion dynamics in nature, we designed a series of experiments addressing potential mechanisms facilitating a successful occupation of the new niche. As expected the specialist M. intestinalis can only infect mussel hosts, but displayed higher infection success there than M. orientalis in both principal host species combined. In the absence of direct competitive interactions M. orientalis compensated its lower infection success (1) by recurrent spill-over from its high-fitness reservoir oyster host, and (2) by active aggregation interference enhancing its own mating success while limiting that of M. intestinalis. The introduced parasite could thus avoid direct competition by changing its own epidemiology and indirectly decreasing the reproductive success of its competitor in the new host. Such mechanisms outside of direct competition have seldom been considered, but are crucial to understand invasion success, parasite host range and community assembly in the context of species introductions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3