Isolation of seawater microplastics from biologically rich samples using an alkaline K2S2O8 method

Author:

Gao Nan,Kong Xiangfeng,Zhang Yanmin,Gao Yang,Zhang Yuanbiao,Liu Yan

Abstract

In recent years, microplastics, especially marine microplastic pollution, have received global attention as a new type of environmental problem. The establishment of accurate and efficient methods for the detection of microplastics is the basis for in-depth research on the transport, transformation, fate, and ecotoxicological effects of microplastics in the environment. Microplastics in seawater frequently mix with biological tissues, resulting in challenges when identifying samples. However, commonly used pretreatment protocols for microplastics often suffer from long digestion times, inadequate digestion, and the risk of potentially damaging microplastics. This study compared the digestion efficiencies of five digestion reagents and provided further insights into two advanced oxidation methods involving Fenton’s reagent and an innovative alkaline K2S2O8 protocol based on sulfate and hydroxyl radicals. Using Raman spectroscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM−EDS), and carbonyl index (CI) analyses, the status of microplastics after pretreatment was evaluated. The results revealed that the alkaline K2S2O8 method could enhance the reaction efficiency while reducing the potential for functional group damage during microplastic pretreatment. Moreover, the proposed K2S2O8 method was applied to the pretreatment of field seawater samples, and field microplastics were effectively separated from biologically rich samples. Thus, a digestion protocol based on alkaline K2S2O8 provides an effective way to isolate seawater microplastics from biologically rich samples. This study contributes to the development of efficiently microplastic monitoring and provides valuable insights into access to reliable data for fate and inventory of oceanic microplastics.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3