Mesoscale-driven dispersion of early life stages of European eel

Author:

Munk P.,Buongiorno Nardelli B.,Mariani P.,Bendtsen J.

Abstract

The larvae of the European eel travel an extensive distance of approximately 5,000 km from the spawning area in the Sargasso Sea to the European coasts. We here study the larval drift with focus on the effects of mesoscale processes, analyzing data from a targeted survey and modeling possible drift trajectories. The survey covered the initial distribution of larvae in the Subtropical Convergence Zone (STCZ), which is characterized by complex patterns of oceanic fronts and mesoscale eddies. During March–April 2014, sampling was carried out along north–south transects. Hydrography was described using vertical CTD casts and UCTD profiles, and larval distributions assessed from hauls of a large ring net. Patterns in water mass distribution and particle dispersion dynamics were analyzed by reconstruction and diagnosis of mesoscale dynamics, combining satellite observations and Argo profiles. Lagrangian drift trajectories of eel larvae were subsequently simulated starting from a data-driven high-resolution 3D reconstruction of the modeled flow. We found the area of larval distribution delimited by frontal zones, defined by the combined effects of marked longitudinal salinity gradients and large-scale zonal temperature variations. Modeled patterns of eel larvae dispersion were predominantly influenced by the current shear and eddy strain, and while the direction was mainly westward, a significant dispersal was also observed in northeastward directions. Such almost isotropic transport of European eels is supported by historical data on larval size distribution, and results challenge common interpretations of eel larval drift, which propose an initial westward advection of the entire population to the Gulf Stream along the offshore edge of the Antilles current.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3