Grazing, egg production and carbon budgets for Calanus finmarchicus across the Fram Strait

Author:

Jenkins Holly E.,Atherden Florence,Cook Kathryn B.,Anderson Thomas R.,Thornton Barry,Mitchell Elaine,Jacob Elodie,Mayor Daniel J.

Abstract

Calanoid copepods comprise around 90% of Arctic zooplankton biomass and are fundamental to the ecological and biogeochemical functioning of high-latitude pelagic ecosystems. They accumulate lipid reserves during the productive months and represent an energy-rich food source for higher trophic levels. Rapidly changing climate in the Arctic may alter the quantity and composition of the food environment for one of the key copepod species, Calanus finmarchicus, with as yet unquantified effects on its production. Here we present rates of feeding and egg production in female C. finmarchicus exposed to the range of feeding conditions encountered across the Fram Strait in May/June 2018. Carbon (C) budgets were constructed and used to examine the relationship between feeding and growth (= egg production) in these animals. C-specific ingestion rates (mean ± standard deviation) were highly variable, ranging from 0.015 ± 0.004 to 0.645 ± 0.017 day-1 (mean = 0.295 ± 0.223 day-1), and were positively correlated with food availability. C-specific egg production rates ranged from 0.00 to 0.049 day-1 (mean = 0.012 ± 0.011) and were not correlated with either food availability or ingestion rate. Calculated gross growth efficiencies (GGE: growth/ingestion) were low, 0.12 ± 0.13 (range = 0.01 to 0.39). The assembled C budgets indicate that the average fraction of ingested food that was surplus to the requirements for egg production, respiration and losses to faecal pellets was 0.17 ± 0.42. We suggest that this excess occurred, at least in part, because many of the incubated females were still undergoing the energetically (C-) expensive process of gonad maturation at the time of sampling, an assertion that is supported by the relatively high C:N (nitrogen) ratios of the incubated females, the typically low egg production rates, and gonad maturation status. Ontogenetic development may thus explain the large variability seen in the relationship between egg production and ingestion. The apparently excessive ingestion rates may additionally indicate that recently moulted females must acquire additional N via ingestion to complete the maturation process and begin spawning. Our results highlight the need for improved fundamental understanding of the physiology of high-latitude copepods and its response to environmental change.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3