Ranging Patterns and Site Fidelity of Snubfin Dolphins in Yawuru Nagulagun/Roebuck Bay, Western Australia

Author:

D’Cruz Alexandra,Salgado Kent Chandra,Waples Kelly,Brown Alexander M.,Marley Sarah A.,Thiele Deborah,Raudino Holly C.,

Abstract

For long-lived species such as marine mammals, having sufficient data on ranging patterns and space use in a timescale suitable for population management and conservation can be difficult. Yawuru Nagulagun/Roebuck Bay in the northwest of Western Australia supports one of the largest known populations of Australian snubfin dolphins (Orcaella heinsohni)—a species with a limited distribution, vulnerable conservation status, and high cultural value. Understanding the species’ use of this area will inform management for the long-term conservation of this species. We combined 11 years of data collected from a variety of sources between 2007 and 2020 to assess the ranging patterns and site fidelity of this population. Ranging patterns were estimated using minimum convex polygons (MCPs) and fixed kernel densities (weighted to account for survey effort) to estimate core and representative areas of use for both the population and for individuals. We estimated the population to range over a small area within the bay (103.05 km2). The Mean individual representative area of use (95% Kernel density contour) was estimated as 39.88 km2 (± 32.65 SD) and the Mean individual core area of use (50% Kernel density contour) was estimated as 21.66 km2 (±18.85 SD) with the majority of sightings located in the northern part of the bay less than 10 km from the coastline. Most individuals (56%) showed moderate to high levels of site fidelity (i.e., part-time or long-term residency) when individual re-sight rates were classified using agglomerative hierarchical clustering (AHC). These results emphasize the importance of the area to this vulnerable species, particularly the area within the Port of Broome that has been identified within the population’s core range. The pressures associated with coastal development and exposure to vessel traffic, noise, and humans will need to be considered in ongoing management efforts. Analyzing datasets from multiple studies and across time could be beneficial for threatened species where little is known on their ranging patterns and site fidelity. Combined datasets can provide larger sample sizes over an extended period of time, fill knowledge gaps, highlight data limitations, and identify future research needs to be considered with dedicated studies.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3