Detecting centennial changes in the clarity and colour of the Red and Eastern Mediterranean Seas by retracting the “Pola” expeditions

Author:

Heath Jonathan R.,Brewin Robert J. W.,Pitarch Jaime,Raitsos Dionysios E.

Abstract

The world’s oceans and seas are changing rapidly due to several natural and anthropogenic reasons. Among these, the largest and likely most threatening to marine life being the climate crisis and rising sea temperatures. Studying the dominant primary producers of most marine ecosystems, phytoplankton, and their response to these alterations is challenging, yet essential due to the critical role phytoplankton play in both the oceans and wider biosphere. Satellites are a crucial tool used to study phytoplankton but lack the timespan needed to accurately observe abundance patterns in response to climate change. Historical oceanographic data are increasingly being used to understand changes in the abundance of phytoplankton over the last century. Here, we retrace Secchi depth and Forel-Ule colour scale surveys performed during the “Pola” expeditions between 1890-1898 using contemporary satellite data, to assess changes in water colour and clarity (and by extension phytoplankton abundance) in the Red Sea and the Eastern Mediterranean Sea over the past century. The results show a significant greening of both regions investigated as well as a decrease in water clarity. The Red Sea Forel-Ule colour increased by 0.83 (± 0.08) with an average decrease in Secchi depth of 5.07 m (± 0.44). The Forel-Ule colour in the Eastern Mediterranean increased by 0.50 (± 0.07) and the historic Secchi depth readings were an average of 8.85 m (± 0.47) deeper than present day. Changes in Secchi depth between periods were greater than that which may have been caused by differences in the size of the Secchi disk used on the “Pola” expeditions, estimated using traditional Secchi depth theory. There was no clear change in seasonality of phytoplankton abundance and blooms, although winter months saw many of the largest changes in both measured variables. We discuss potential drivers for this change and the challenges and limitations of combining historical and modern datasets of water clarity and colour.

Funder

UK Research and Innovation

Gordon and Betty Moore Foundation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3