Enhancement of turbulence and nutrient fluxes within an Eastern Boundary Upwelling Filament: a diapycnal entrainment approach

Author:

Estrada-Allis Sheila N.,Rodríguez-Santana Ángel,Naveira-Garabato Alberto C.,García-Weil Luis,Arcos-Pulido Mireya,Emelianov Mikhail

Abstract

The filaments of the African Eastern Boundary Upwelling System (EBUS) are responsible for feeding nutrients to the oligotrophic waters of the northeastern Atlantic. However, turbulent mixing associated with nutrient uplift in filaments is poorly documented and has been mainly evaluated numerically. Using microstructure profiler measurements, we detected enhanced turbulent kinetic energy dissipation rates (ε) within the Cape Ghir upwelling filament. In contrast to previous studies, this enhancement was not related to symmetrical instabilities induced by down-front winds but to an increase in vertical current shear at the base of the mixed layer (hρ). In order to quantify the impact of vertical shear and the influence of the active mixing layer depth (hε) in the filament, a simple one-dimensional (1D) turbulent entrainment approach was used. We found that the effect of turbulent enhancement, together with the isopycnal morphology of the filament front, drove the formation of local positive entrainment zones (Δh=hεhρ), as hε was deeper than hρ. This provided suitable conditions for the entrainment of cold, nutrient-rich waters from below the filament pycnocline and the upward transport of biophysical properties to the upper boundary layer of the front. We also found that diapycnal nutrient fluxes in stations influenced by the filament (1.35 mmol m-2 d-1) were two orders of magnitude higher than those of stations not affected by the filament front (0.02 mmol m-2 d-1). Despite their importance, the effects of vertical shear and hε have often been neglected in entrainment parameterizations. Thus, a modified entrainment parameterization was adapted to include vertical shear and observed ε, which are overestimated by existing parameterizations. To account for the possible role of internal waves in the generation of vertical shear, we considered internal wave scaling to parameterize the observed dissipation. Using this adapted parameterization, the average entrainment velocities were six times (6 m d-1) higher than those obtained with the classic parameterization (1 m d-1).

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3