Spatial and seasonal variability of horizontal temperature fronts in the Mozambique Channel for both epipelagic and mesopelagic realms

Author:

Sudre Floriane,Dewitte Boris,Mazoyer Camille,Garçon Véronique,Sudre Joel,Penven Pierrick,Rossi Vincent

Abstract

IntroductionOcean fronts are moving ephemeral biological hotspots forming at the interface of cooler and warmer waters. In the open ocean, this is where marine organisms, ranging from plankton to mesopelagic fish up to megafauna, gather and where most fishing activities concentrate. Fronts are critical ecosystems so that understanding their spatio-temporal variability is essential not only for conservation goals but also to ensure sustainable fisheries. The Mozambique Channel (MC) is an ideal laboratory to study ocean front variability due to its energetic flow at sub-to-mesoscales, its high biodiversity and the currently debated conservation initiatives. Meanwhile, fronts detection relying solely on remotely-sensed Sea Surface Temperature (SST) cannot access aspects of the subsurface frontal activity that may be relevant for understanding ecosystem dynamics.MethodIn this study, we used the Belkin and O’Reilly Algorithm on remotely-sensed SST and hindcasts of a high-resolution nested ocean model to investigate the spatial and seasonal variability of temperature fronts at different depths in the MC.ResultsWe find that the seasonally varying spatial patterns of frontal activity can be interpreted as resulting from main features of the mean circulation in the MC region. In particular, horizontally, temperature fronts are intense and frequent along continental shelves, in islands’ wakes, at the edge of eddies, and in the pathways of both North-East Madagascar Current (NEMC) and South-East Madagascar Current (SEMC). In austral summer, thermal fronts in the MC are mainly associated with the Angoche upwelling and seasonal variability of the Mozambique current. In austral winter, thermal fronts in the MC are more intense when the NEMC and the Seychelles-Chagos and South Madagascar upwelling cells intensify. Vertically, the intensity of temperature fronts peaks in the vicinity of the mean thermocline.DiscussionConsidering the marked seasonality of frontal activity evidenced here and the dynamical connections of the MC circulation with equatorial variability, our study calls for addressing longer timescales of variability to investigate how ocean ecosystem/front interactions will evolve with climate change.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3