Estimating Bycatch Mortality for Marine Mammals: Concepts and Best Practices

Author:

Moore Jeffrey E.,Heinemann Dennis,Francis Tessa B.,Hammond Philip S.,Long Kristy J.,Punt André E.,Reeves Randall R.,Sepúlveda Maritza,Sigurðsson Guðjón Már,Siple Margaret C.,Víkingsson Gísli A.,Wade Paul R.,Williams Rob,Zerbini Alexandre N.

Abstract

Fisheries bycatch is the greatest current source of human-caused deaths of marine mammals worldwide, with severe impacts on the health and viability of many populations. Recent regulations enacted in the United States under the Fish and Fish Product Import Provisions of its Marine Mammal Protection Act require nations with fisheries exporting fish and fish products to the United States (hereafter, “export fisheries”) to have or establish marine mammal protection standards that are comparable in effectiveness to the standards for United States commercial fisheries. In many cases, this will require estimating marine mammal bycatch in those fisheries. Bycatch estimation is conceptually straightforward but can be difficult in practice, especially if resources (funding) are limiting or for fisheries consisting of many, small vessels with geographically-dispersed landing sites. This paper describes best practices for estimating bycatch mortality, which is an important ingredient of bycatch assessment and mitigation. We discuss a general bycatch estimator and how to obtain its requisite bycatch-rate and fisheries-effort data. Scientific observer programs provide the most robust bycatch estimates and consequently are discussed at length, including characteristics such as study design, data collection, statistical analysis, and common sources of estimation bias. We also discuss alternative approaches and data types, such as those based on self-reporting and electronic vessel-monitoring systems. This guide is intended to be useful to managers and scientists in countries having or establishing programs aimed at managing marine mammal bycatch, especially those conducting first-time assessments of fisheries impacts on marine mammal populations.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3