Modeling of the habitat suitability of European sprat (Sprattus sprattus, L.) in the Adriatic Sea under several climate change scenarios

Author:

Palermino Antonio,De Felice Andrea,Canduci Giovanni,Biagiotti Ilaria,Costantini Ilaria,Centurelli Michele,Menicucci Samuele,Gašparević Denis,Tičina Vjekoslav,Leonori Iole

Abstract

The Mediterranean Sea represents the lower latitudinal limit of the European sprat range, where it is considered a sentinel species favoring temperate–cold temperatures. Sprattus sprattus is a plankton feeder that plays an important ecological role in contributing to the transfer of energy from lower to higher trophic levels, but climate-driven increases in sea temperatures may reduce the suitability of the pelagic habitat and threaten the tropho-dynamic role of sprat in areas such as the Adriatic Sea. The latter is an enclosed basin characterized by shallow waters and high annual temperature variations. Here, to investigate present and future habitat suitability areas for sprat, we applied four species distribution models (SDMs) using fishery-independent data collected from 2004 to 2021, along with remotely sensed and modeled environmental variables. A set of nine environmental predictors was tested, and the resulting best model was averaged in an ensemble model approach. The best ensemble models revealed good to high accuracy (sensitivity and specificity ≥ 0.8). The sea surface temperature and chlorophyll concentration emerged as the main explanatory variables in predicting the potential habitat of sprats, followed by bathymetry. The resulting probability of occurrence maps revealed that the species is bounded in the northern Adriatic Sea, where a longitudinal shift of high-suitability habitats from inshore to deeper and colder waters was detected between early and late summer. Future projections under IPCC representative concentration pathway (RCP) scenarios 4.5 (intermediate emission) and 8.5 (high emission-warm) underline small changes along with a gain of new areas in late summer in the short-term period up to 2050. Conversely, the temperature increase projected for the end of the century is predicted to cause a loss of suitable habitat area for sprats of up to 88% under a high emission-warm scenario relative to current habitat occupancy throughout the basin.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3