Algorithm to estimate daily PAR at the ocean surface from GOCI data: description and evaluation

Author:

Hwang Deuk Jae,Frouin Robert,Tan Jing,Ahn Jae-Hyun,Choi Jong-Kuk,Moon Jeong-Eon,Ryu Joo-Hyung

Abstract

Photosynthetically available radiation (PAR) reaching the ocean surface controls phytoplankton growth, primary productivity, and evolution within marine ecosystems. Therefore, accurate daily PAR estimates are important for a broad range of marine biology and biogeochemistry applications. In this study, hourly data from Geostationary Ocean Color Imager (GOCI), the world’s first geostationary ocean color sensor, was employed to estimate daily mean PAR at the ocean surface around the Korean Peninsula using a budget model based on plane-parallel theory. In situ PAR data collected from two ocean research stations (Socheong-cho and Ieodo) were used to evaluate the accuracy of the GOCI PAR estimates. First, the instantaneous in situ measurements were checked for calibration and exposure errors against Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer calculations under the clearest sky conditions and adjusted to eliminate biases. After adjustment, the root-means-square error (RMSE) between 6S and in situ PAR data was reduced from 6.08 (4.81%) and 3.82 (3.93%) mol/m2/day to 2.85 (2.26%) and 1.74 (1.21%) mol/m2/day at the Socheong-cho and Ieodo stations, respectively, and the coefficient of determination R2 was 0.99. Then, the GOCI daily mean PAR estimated by the initial algorithm were corrected using the 2015 adjusted in situ daily PAR measurements collected under clear-sky conditions. The daily mean PAR values derived from GOCI data in all conditions were improved after the correction, with RMSE reduced from 4.58 (8.30%) to 2.57 (4.65%) mol/m2/day and R2 = 0.97. The comparison statistics were similar for 2015 and 2016 combined, with RMSE of 2.52 (4.38%) and mean bias error (MBE) of –0.40 (–0.70%), indicating that the correction was also effective in cloudy conditions. On the other hand, daily PAR estimates from Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Himawari Imager (AHI) yielded larger RMSE of 6.24 (10.40%) mol/m2/day and MBE of –2.49 (–4.15%) mol/m2/day (MODIS) and RMSE of 3.71 (6.51%) mol/m2/day and MBE of –2.65 (–4.65%) mol/m2/day (AHI) against in situ measurements. The GOCI-based daily PAR model developed in this study is reliable and suitable for investigating the marine environment around the Korean Peninsula.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3