Distribution and Production of N2O in the Subtropical Western North Pacific Ocean During the Spring of 2020

Author:

Heo Jang-Mu,Kim Hyo-Ryeon,Eom Sang-Min,Yoon Joo-Eun,Shim JeongHee,Lim Jae-Hyun,Kim Ju-Hyoung,Thangaraj Satheeswaran,Park Ki-Tae,Joo HuiTae,Kim Il-Nam

Abstract

Nitrous oxide (N2O) is an important greenhouse gas emitted in significant volumes by the Pacific Ocean. However, the relationship between N2O dynamics and environmental drivers in the subtropical western North Pacific Ocean (STWNPO) remains poorly understood. We investigated the distribution of N2O and its production as well as the related mechanisms at the surface (0–200 m), intermediate (200–1500 m), and deep (1500–5774 m) layers of the STWNPO, which were divided according to the distribution of water masses. We applied the transit time distribution (TTD) method to determine the ventilation times, and to estimate the N2O equilibrium concentration of water parcels last in contact with the atmosphere prior to being ventilated. In the surface layer, biologically derived N2O (ΔN2O) was positively correlated with the apparent oxygen utilization (AOU) (R2 = 0.48), suggesting that surface N2O may be produced by nitrification. In the intermediate layer, ΔN2O was positively correlated with AOU and NO3 (R2 = 0.92 and R2 = 0.91, respectively) and negatively correlated with nitrogen sinks (N*) (R2 = 0.60). Hence, the highest ΔN2O value in the oxygen minimum layer suggested N2O production through nitrification and potential denitrification (up to 51% and 25% of measured N2O, respectively). In contrast, the deep layer exhibited a positive correlation between ΔN2O and AOU (R2 = 0.92), suggesting that the N2O accumulation in this layer may be caused by nitrification. Our results demonstrate that the STWNPO serves as an apparent source of atmospheric N2O (mean air−sea flux 2.0 ± 0.3 μmol m-2 d-1), and that nitrification and potential denitrification may be the primary mechanisms of N2O production in the STWNPO. We predict that ongoing ocean warming, deoxygenation, acidification, and anthropogenic nitrogen deposition in the STWNPO may elevate N2O emissions in the future. Therefore, the results obtained here are important for elucidating the relationships between N2O dynamics and environmental changes in the STWNPO and the global ocean.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3