Mangrove sediments-associated bacterium (Bacillus sp. SW7) with multiple plant growth-promoting traits promotes the growth of tomato (Solanum Lycopersicum)

Author:

Afridi Mahideen,Sadaiappan Balamurugan,Nassar Amna Saood,Mahmoudi Henda,Khan Munawwar Ali,Mundra Sunil

Abstract

Global food production intensification presents a major hurdle to ensuring food security amidst a growing world population. Widespread use of chemical fertilizers in recent decades has risked soil fertility, compounded by the challenges posed by climate change, particularly in arid regions. To address these issues, adopting plant growth-promoting (PGP) bacteria stands out as a promising solution, offering multifaceted benefits to arid agroecosystems. We isolated a bacterial strain, SW7, from mangrove sediment, characterised the entire genome followed by phylogenetic analyses, and evaluated its in-vitro PGP activity. Subsequently, we examined its impact on tomato seed germination and plant growth. The strain SW7 exhibited growth on 11% NaCl, survival at 50°C, and possessed multiple PGP traits such as significant increase in seed germination rate (60.60 ± 38.85%), phosphate (83.3 g L−1) and potassium (39.6 g L−1) solubilization and produced indole acetic acid (3.60 ppm). Additionally, strain SW7 tested positive for ammonia, catalase, and oxidase enzyme production. The strain SW7 genome consists of 5.1 MB with 35.18% G+C content. Through genome-based phylogenetic and orthoANI analyses, the strain was identified as a novel Bacillus species, designated herein as Bacillus sp. SW7. In an eight-week shade-house experiment, inoculation of strain SW7 improved, leaf number, leaf density, leaf area index and mass water of tomatoes. Additional parameters, like chlorophyll a, chlorophyll b and carotenoids were not affected in SW7-inoculated tomatoes. In conclusion, Bacillus sp. SW7 exhibits multiple PGP traits and an adaptive capacity to high temperature and salinity, positioning it as a potential candidate for elevating the productivity of arid agroecosystems.

Funder

United Arab Emirates University

Zayed University

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3