Significant wave height prediction based on deep learning in the South China Sea

Author:

Hao Peng,Li Shuang,Gao Yu

Abstract

Significant wave height (SWH) prediction can effectively improve the safety of marine activities and reduce the occurrence of maritime accidents, which is of great significance to national security and the development of the marine economy. In this study, we comprehensively analyzed the SWH prediction performance of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) by considering different input lengths, prediction lengths, and model complexity. The experimental results show that (1) the input length impacts the prediction results of SWH, but it does not mean that the longer the input length, the better the prediction performance. When the input length is 24h, the prediction performance of RNN, LSTM, and GRU models is better. (2) The prediction length influences the SWH prediction results. As the prediction length increases, the prediction performance gradually decreases. Among them, RNN is not suitable for 48h long-term SWH prediction. (3) The more layers of the model, the better the SWH prediction performance is not necessarily. When the number of layers is set to 3 or 4, the model’s prediction performance is better.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3