Nearshore to Offshore Trends in Plankton Assemblage and Stable Isotopes in Reefs of the West Philippine Sea

Author:

Yñiguez Aletta T.,Apego Gianina Cassandra May,Mendoza Norman,Gomez Norchel Corcia,Jacinto Gil S.

Abstract

Coral reefs are typified by their benthic components, and reef diversity and productivity are traditionally ascribed to the symbiotic association between corals and zooxanthellae, and other macroalgal forms. Less understood is the role of plankton and adjacent pelagic areas in contributing to reef productivity. Half of the reef benthos are filter or particle feeders, while a significant proportion of reef fishes are planktivorous. These organisms can serve as bridges between adjacent oceanic areas to the reef proper, and the pelagic and benthic realm. Here, we investigate the plankton trophic dynamics in two reef systems in the West Philippine Sea. Physico-chemical data, phytoplankton and mesozooplankton samples were collected from stations spanning offshore to reef areas per site. These were subjected to microscopic and stable isotope analysis to determine variability in plankton distribution, phytoplankton and zooplankton interactions, and gain insights into the trophic dynamics and productivity of reefs. Results showed distinct variations in plankton biomass and assemblage from offshore to reef areas, as well as between the reef systems. Phytoplankton distributions pointed toward filtering out of cells across the fore reef and reef flat areas, while mesozooplankton distributions could be mediated more by other factors. Isotopic signatures of δ13C and δ15N indicated the influence of different nutrient sources for phytoplankton and that mesozooplankton relied only partly on phytoplankton for food in most areas of the reefs. The mesozooplankton likely also obtain food from other sources such as the microbial and detrital pathways. More in-depth spatio-temporal studies on these bentho-pelagic interactions are recommended, which can provide more robust estimates of the trophic dynamics of these reefs that are situated in important fishing grounds and key biodiversity areas.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3