Water mass mixing contributes dynamics of dissolved organic matter in Kuroshio-Oyashio confluence region

Author:

Wang Yasong,Liu Bilin,Wu Weichao,Liu Liang,Wang Yinghui,Xu Yunping

Abstract

The Kuroshio-Oyashio confluence region (K/O region) plays a significant role in the global carbon cycle and climate change. In this study, we examined the concentration and composition of dissolved organic matter (DOM) in water samples collected from depths of 0 to 1000 meters between 2019 and 2021. The concentration of dissolved organic carbon (DOC) ranged from 30.54 to 113.21 μmol L-1, with higher concentrations observed in surface waters. The biological index (BIX) decreases with increasing depth, indicating decreasing in-situ production of plankton downwards. Additionally, the humification index (HIX) increased with depth, suggesting the transformation of labile to refractory DOC by bacteria. Using parallel factor analysis, we identified two humic-like (C1, C3) and one protein-like (C2) fluorescent components in 467 water samples. Water samples collected in 2020 exhibited significantly higher specific ultraviolet absorbance at 254 nm (SUVA254) (0.5 ± 0.2 L mg-1 m-1) and higher intensities of C1 (8.2 ± 2.69 *10-3 R.U.) and C3 (9.22 ± 4.39 *10-3 R.U.) compared to samples from 2019 and 2021. We found that water temperature had a positive correlation with C2 intensity (r = 0.33; p< 0.01), but negative correlations with C1 (r = −0.72; p< 0.01) and C3 intensity (r = −0.55; p< 0.01). Comparison of measured and theoretical values using a conservative physical mixing model revealed active biogeochemical processes of DOM during water mixing of the Kuroshio, Oyashio, and North Pacific Intermediate Water that change concentration and composition of DOM. Since the hydrology in the K/O region is sensitive for the ongoing climate warming, further investigation is needed to understand water mass mixing and associated DOM dynamics.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3