Spatio-temporal analysis of east greenland polar front

Author:

Liu Yu,Wang Jianhui,Han Guoqing,Lin Xiayan,Yang Guijing,Ji Qiyan

Abstract

The East Greenland Polar Front (EGPF) is an important front with strong salinity and temperature gradients in the Nordic Seas. It is formed by the interaction between Arctic-origin and Atlantic-origin water. The variations of EGPF are closely linked with sea ice melting and heat content transport associated with North Atlantic water recirculation. For a three-dimensional (3D) daily analysis, we use the global ocean eddy resolution reanalysis product (GLORYS12V1) from 1993 to 2018 to calculate the salinity and temperature horizontal gradient in the upper ocean and obtain the spatiotemporal distribution and intensity characteristics of EGPF. After assessment, the thresholds of the salinity and temperature fronts are set to 0.04 psu/km and 0.09°C/km, respectively. Compared with satellite observations of sea ice concentration, a significant spatial relationship is observed between the main position of EGPF and the ice edge before the sea ice shrinks to the continental shelf sea area. Affected by the freshening of the Arctic-origin water due to the melting of the sea ice, the intensity and area of EGPF show significant seasonal variations. Against the background of global warming, the sea ice area presents an obvious decreasing trend in the Greenland Sea. The melting of sea ice increased annually every summer from 1998 to 2018. The heat content transport of the Atlantic-origin water has also increased in recent years. The 3D characteristics (intensity and volume) of EGPF as salinity and temperature fronts exhibit increasing trends.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference51 articles.

1. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis;Amante,2009

2. Greenland Coastal air temperatures linked to Baffin bay and Greenland Sea ice conditions during autumn through regional blocking patterns;Ballinger;Climate Dynam.,2018

3. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery;Belkin;J. Mar. Syst.,2009

4. The evolution of a shallow front in the Arctic marginal ice zone;Brenner;Elementa.: Sci. Anthropocene.,2020

5. Arctic Sea ice variability and trend 1979–2010;Cavalieri;Cryosphere.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3