Observational Study on the Variability of Mixed Layer Depth in the Bering Sea and the Chukchi Sea in the Summer of 2019

Author:

Jiao Xiaohui,Zhang Jicai,Li Qun,Li Chunyan

Abstract

Based on the CTD data from 58 stations in the Bering Sea and the Chukchi Sea in the summer of 2019, the values of mixed layer depth (MLD) were obtained by using the density difference threshold method. It was concluded that the MLD can be estimated more accurately by using a criterion of 0.125 kg/m3 in this region. The average MLD in the Bering Sea basin was larger than that in the Bering Sea shelf, and both of them were smaller than that in the Bering Sea slope. The MLD increased northward in both the Chukchi Sea shelf and the Chukchi Sea slope. The farther northward, the greater the difference between the MLD calculated from temperature (MLDt) and the MLD calculated from density (MLDd). The water masses and their interaction played an important role in the variation of MLD in the northern Bering Sea shelf and Chukchi Sea. The MLD was large due to the vertically homogeneous Anadyr Water in the northwestern Bering Sea shelf. The horizontal advection of Bering Sea Anadyr Water and Alaska Coastal Water in the Bering Sea shelf led to shallower MLD in the central northern Bering Sea shelf. The westward advection of the Alaska Coastal Water caused shallow mixed layers (MLs) in some regions of the Chukchi Sea shelf in the summer of 2019. The observed large MLD at BL01 station near the Aleutian Island was caused by an anticyclonic eddy. The northward increase in the MLD in the Chukchi Sea was related to the low-salinity seawater from sea ice melting in summer. The spatial variation of MLD was also closely related to the surface momentum flux and the sea surface buoyancy flux. Stratification plays an even more important role in determining the variation of MLD. The ML in 2019 was shallower and warmer than those in previous years, especially in the Bering Sea shelf and Chukchi Sea where sea ice volume, thickness, and coverage were significantly larger than the Bering Sea basin, which was related to the small sea ice volume in winter and spring of 2019 compared to previous years.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference46 articles.

1. BoyerT. P. GarciaH. E. LocarniniR. A. ZwengM. M. MishonovA. V. ReaganJ. R. NOAA National Centers for Environmental InformationWorld Ocean Atlas 2018. [Temperature and Salinity]2018

2. The Chukchi Slope Current;Corlett;Prog. Oceanog.,2017

3. Turbulence in the Upper-Ocean Mixed Layer;D’Asaro;Annu. Rev. Mar. Sci.,2014

4. Manifestation and Consequences of Warming and Altered Heat Fluxes Over the Bering and Chukchi Sea Continental Shelves;Danielson;Deep-Sea. Res. II.,2020

5. Coupled Wind-Forced Controls of the Bering–Chukchi Shelf Circulation and the Bering Strait Throughflow: Ekman Transport, Continental Shelf Waves, and Variations of the Pacific–Arctic Sea Surface Height Gradient;Danielson;Prog. Oceanog.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3