Coastal environmental changes after the Saemangeum seawall construction

Author:

Baek Ji-Yeon,Guerreiro Catarina V.,Kim Jaeseong,Nam Jungho,Jo Young-Heon

Abstract

The coastal environment in the Saemangeum area has experienced persistent physical stresses owing to the irregular operation of the sluice gates and related artificial disturbances since seawall construction, which has led to restricted freshwater-seawater circulation. To understand the impacts of stress, we performed long-term (1999-2022, 24 years) in situ measurements of relevant biotic and abiotic parameters and employed the random forest (RF) technique to determine the phytoplankton community response to environmental disturbance. Specifically, we estimated chlorophyll-a (Chl-a) concentrations using an RF model based on various environmental factors such as sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen saturation (DO), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) as input variables. From the RF analysis, each environmental factor contributed to variation in Chl-a concentration as follows: SSS (42.91%), SST (17.88%), DIP (14.38%), DIN (13.36%), and DO (11.48%). In addition, we performed sensitivity experiments by altering the salinity, which was revealed to be the most influential environmental parameter. As a result, Chl-a concentration increased by approximately 1.79 times in lower salinity conditions (from 7 to 27 psu) compared to the normal salinity conditions prior to the seawall construction (from 12 to 32 psu) in both areas, including the inside and outside the seawall. More importantly, lower salinity conditions stimulated dinoflagellate blooms, that is, red tides, implying that restricted freshwater-seawater circulation could worsen coastal ecosystems. Thus, this study contributes to understanding the impacts of environmental changes caused by sluice gate manipulation on marine ecosystems, such as phytoplankton community dynamics. Moreover, this study recommends an ecologically suitable operation scheme for Saemangeum sluice gates to ensure a healthy coastal ecosystem.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3