Validation of Oil Trajectory and Fate Modeling of the Deepwater Horizon Oil Spill

Author:

French-McCay Deborah P.,Spaulding Malcolm L.,Crowley Deborah,Mendelsohn Daniel,Fontenault Jeremy,Horn Matthew

Abstract

Trajectory and fate modeling of the oil released during the Deepwater Horizon blowout was performed for April to September of 2010 using a variety of input data sets, including combinations of seven hydrodynamic and four wind models, to determine the inputs leading to the best agreement with observations and to evaluate their reliability for quantifying exposure of marine resources to floating and subsurface oil. Remote sensing (satellite imagery) data were used to estimate the amount and distribution of floating oil over time for comparison with the model’s predictions. The model-predicted locations and amounts of shoreline oiling were compared to documentation of stranded oil by shoreline assessment teams. Surface floating oil trajectory and distribution was largely wind driven. However, trajectories varied with the hydrodynamic model used as input, and was closest to observations when using specific implementations of the HYbrid Coordinate Ocean Model modeled currents that accounted for both offshore and nearshore currents. Shoreline oiling distributions reflected the paths of the surface oil trajectories and were more accurate when westward flows near the Mississippi Delta were simulated. The modeled movements and amounts of oil floating over time were in good agreement with estimates from interpretation of remote sensing data, indicating initial oil droplet distributions and oil transport and fate processes produced oil distribution results reliable for evaluating environmental exposures in the water column and from floating oil at water surface. The model-estimated daily average water surface area affected by floating oil >1.0 g/m2 was 6,720 km2, within the range of uncertainty for the 11,200 km2 estimate based on remote sensing. Modeled shoreline oiling extended over 2,600 km from the Apalachicola Bay area of Florida to Terrebonne Bay area of Louisiana, comparing well to the estimated 2,100 km oiled based on incomplete shoreline surveys.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3