Human Impact on the Spatiotemporal Evolution of Beach Resilience on the Northwestern Yucatan Coast

Author:

Torres-Freyermuth Alec,Medellín Gabriela,Salles Paulo

Abstract

The northern Yucatan peninsula is prone to coastal flooding and erosion owing to its low-land elevation and high exposure to storms. Therefore, it is important to assess the capability of the beach-dune system to resist, recover, and adapt from storms in the context of coastal development and climate change. This work aims to investigate the role of human impacts on the spatiotemporal evolution of the Coastal Resilience Index (CRI) in the area. The study is conducted on a prograding micro-tidal beach located on the vicinity of coastal structures. Beach and dune morphometrics, characteristic beach parameters, and maximum shoreline recession were determined from the analysis of beach profiles undertaken along a 2-km straight of coastline during the 2015–2020 period. Moreover, the maximum extreme water levels were estimated using in situ data and numerical models. This information is employed to assess the alongshore and temporal variability of the beach resilience. The results suggest that the beach and dune morphology present alongshore and temporal variability due to the human impacts associated to the dune degradation and the presence of coastal structures. The analysis shows that coastal resilience has been increasing over the past years but presents significant alongshore variations. High CRI values were found at beach transects presenting low anthropogenic impact, whereas low resilience was observed at transects with a degraded dune or located in the vicinity of coastal structures regardless of presenting high progradation rates. The observed beach response during the passage of recent tropical storms is consistent with the CRI values.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3