Spatial variation in spawning timing for multi-species Acropora assemblages in the Red Sea

Author:

Osman Eslam O.,Suggett David J.,Attalla Tamer M.,Casartelli Marco,Cook Nathan,El-Sadek Islam,Gallab Ahmed,Goergen Elizabeth A.,Garcias-Bonet Neus,Glanz Jessica S.,Pereira Pedro Henrique,Ramirez-Sanchez Megan,Santoro Erika P.,Stead Alexander,Yoder Sol,Benzoni Francesca,Peixoto Raquel S.

Abstract

Sexual reproduction is a crucial process for reef building coral populations to maximize genetic diversity and recover from large scale disturbances. Mass spawning events by Acropora species represent critical opportunities for populations to persist, and a process that is increasingly exploited to actively restore degraded reefs. However, the timing and predictive capacity of coral spawning throughout the broad thermal and environmental regime of the Red Sea – a region also undergoing significant development and active reef restoration – remains patchy. We, therefore, conducted three parallel reef surveys in the central Red Sea (Al-Fahal Reef, Thuwal - Saudi Arabia) and the eastern (Shushah Island - Saudi Arabia) and western (Hurghada – Egypt) coast of the northern Red Sea. Surveys assessed the gravidity of gonads, spawning timing, alignment with the lunar cycle of 21 Acropora spp. (total n= 572 colonies) around the full moons of April and May 2023. Consistent with past observations, synchronous spawning was observed for Acropora spp. in both the central and northern Red Sea during April and May, respectively. Interestingly, corals spawned on the full moon in both Shushah and Thuwal sites. In contrast, corals in Hurghada were independent of the lunar cycle and spawned 7-9 nights before the full moon in May. By integrating our 2023 observations with the historical spawning events in Hurghada and Thuwal (2002-2022), we found that the deviation of spawning timing from the full moon day was correlated with absolute Sea Surface Temperature (SST) (earlier spawning before the full moon day, lower SST) and warming rate (earlier spawning, more rapid warming) in 6-weeks prior to spawning. As such, temperature pattern is likely one of the primary factors governing gamete release, among other factors, that likely influence spawning day within the lunar month. These correlations between SST metrics and spawning timing suggest a potential framework to predict future Acropora spp. spawning dates. Our observations demonstrate the importance of parallel efforts across borders to collect critical data needed to inform management strategies aimed at conserving and restoring coral reefs in this ecologically diverse region.

Publisher

Frontiers Media SA

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3