Temporal variations of biological nitrogen fixation and diazotrophic communities associated with artificial seaweed farms

Author:

Pei Pengbing,Aslam Muhammad,Yang Chunyou,Ye Peilin,Ke Xiao,Liang Zhanhua,Li Tangcheng,Chen Weizhou,Du Hong

Abstract

Diazotrophic communities contribute inorganic nitrogen for the primary productivity of the marine environment by biological nitrogen fixation (BNF). They play a vital role in the biogeochemical cycle of nitrogen in the marine ecological environment. However, there is still an incomplete understanding of BNF and diazotrophs in artificial seaweed farms. Therefore, this study comprehensively investigated the temporal variations of BNF associated with Gracilariopsis lemaneiformis, as well as the diazotrophic communities associated with macroalgae and its surrounding seawater. Our results revealed that a total of 13 strains belonging to Proteobacteria and Bacteroidetes were identified as N2-fixing bacteria using azotobacter selective solid medium and nifH gene cloning. Subsequently, BNF and diazotrophic communities were characterized using the acetylene reduction method and high-throughput sequencing of the nifH gene, respectively. The results showed that nitrogenase activity and nifH gene abundance of epiphytic bacteria on G. lemaneiformis varied significantly among four different cultivation periods, i.e., Cultivation Jan. (CJ), Cultivation Feb. (CF), Cultivation Mar. (CM), Cultivation Apr. (CA). Among them, the nitrogenase activity and nifH gene abundance of epiphytic bacteria on G. lemaneiformis in CM were significantly higher than those in CJ, CF, and CA, indicating that the BNF of eiphytic bacteria on G. lemaneiformis was markedly enhanced. Combined with the data on environmental factors, it was found that the low concentration of nitrogen and phosphorus in CM might considerably boost the BNF of epiphytic bacteria in G. lemaneiformis. The sequencing results of the nifH gene showed that the α-diversity of diazotrophic communities associated with G. lemaneiformis and seawater in CM was higher than that in other cultivation periods. In addition, the diazotrophic communities on G. lemaneiformis were significantly different in CJ, CF, CM, and CA, and they were significantly diverse from diazotrophic communities in seawater. LEfSe analysis indicated that Rhodobacterales, Hyphomonadaceae, Robiginitomaculum, and Robiginitomaculum antarcticum within α-proteobacteria played a remarkable role in BNF in response to nitrogen nutrient deficiency. Taken together, these results provide a unique insight into the interaction between macroalgae and its epiphytic bacteria and lay a foundation for further research on the mechanism of action of nitrogen-cycling microorganisms associated with macroalgae.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3