Barotropic and baroclinic tides increase primary production on the Northwest European Shelf

Author:

Kossack Jan,Mathis Moritz,Daewel Ute,Zhang Yinglong Joseph,Schrum Corinna

Abstract

High biological productivity and the efficient export of carbon-enriched subsurface waters to the open ocean via the continental shelf pump mechanism make mid-latitude continental shelves like the northwest European shelf (NWES) significant sinks for atmospheric CO2. Tidal forcing, as one of the regionally dominant physical forcing mechanisms, regulates the mixing-stratification status of the water column that acts as a major control for biological productivity on the NWES. Because of the complexity of the shelf system and the spatial heterogeneity of tidal impacts, there still are large knowledge gaps on the role of tides for the magnitude and variability of biological carbon fixation on the NWES. In our study, we utilize the flexible cross-scale modeling capabilities of the novel coupled hydrodynamic–biogeochemical modeling system SCHISM–ECOSMO to quantify the tidal impacts on primary production on the NWES. We assess the impact of both the barotropic tide and the kilometrical-scale internal tide field explicitly resolved in this study by comparing simulated hindcasts with and without tidal forcing. Our results suggest that tidal forcing increases biological productivity on the NWES and that around 16% (14.47 Mt C) of annual mean primary production on the shelf is related to tidal forcing. Vertical mixing of nutrients by the barotropic tide particularly invigorates primary production in tidal frontal regions, whereas resuspension and mixing of particulate organic matter by tides locally hinders primary production in shallow permanently mixed regions. The tidal impact on primary production is generally low in deep central and outer shelf areas except for the southwestern Celtic Sea, where tidal forcing substantially increases annual mean primary production by 25% (1.53 Mt C). Tide-generated vertical mixing of nutrients across the pycnocline, largely attributed to the internal tide field, explains one-fifth of the tidal response of summer NPP in the southwestern Celtic Sea. Our results therefore suggest that the tidal NPP response in the southwestern Celtic Sea is caused by a combination of processes likely including tide-induced lateral on-shelf transport of nutrients. The tidally enhanced turbulent mixing of nutrients fuels new production in the seasonally stratified parts of the NWES, which may impact the air–sea CO2 exchange on the shelf.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3