Modulation of the symbionts light environment in hospite in scleractinian corals

Author:

Galindo-Martínez Claudia Tatiana,Chaparro Arelys,Enríquez Susana,Iglesias-Prieto Roberto

Abstract

The upregulation of animal chromoproteins (CPs) during thermal stress produces “colorful” bleached corals that facilitate coral recovery after bleaching. In situ measurements indicate that animal CPs present in coral tissues reduce the elevated internal light environment of the remaining symbionts in bleached or low-pigmented stressed corals. However, there is still a lack of understanding regarding the extent to which animal CPs contribute to modifying the internal light environment of the symbionts in hospite. In this study, we evaluate the effect of three animal CPs on the optical properties of the coral tissue and their internal light environment using a numerical model. The model allows estimations of the absorbance spectra of corals as a function of changes in symbiont and animal pigmentation, as well as descriptions of the light environment in hospite of the symbionts. These descriptions were derived from the quantification of the contribution of each pigment component to light absorption, together with the contribution of the coral skeleton’s reflectance. Simulations indicate that animal CPs upregulation modifies the spectral distribution and the intensity of the internal light field. Animal CPs can reduce up to 11% of the light intensity in hospite when present individually, and up to 24% when present in combination. Such reduction may play a critical role in preventing the full development of the bleached phenotype when irradiance rises to excessive levels at low coral pigmentation, facilitating coral recovery and symbiont tissue re-colonization after bleaching. Accordingly, coral’s CPs components need to also be considered when selecting coral species for future restoration efforts.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of host pigments in coral photobiology;Frontiers in Marine Science;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3