Acropora tenuis energy acquisition along a natural turbidity gradient

Author:

Zweifler Adi,Browne Nicola K.,Levy Oren,Hovey Renae,O’Leary Mick

Abstract

Predicted future increases in both local and global stressors are expected to lead to elevated turbidity levels and an expansion of the geographical range of turbid coral reefs. Corals typically respond to elevated turbidity by increasing their rates of heterotrophy as means of compensating for low energy levels from reduced light and photosynthesis. We analysed Acropora tenuis energy acquisition along a natural turbidity gradient over two time points in Exmouth Gulf, Western Australia, using in-situ environmental data with coral physiology attributes and stable isotopes to assess trophic strategy. Our hypothesis was that as turbidity levels increased, so too would heterotrophy rates. Both δ13C and δ15N values decreased from the clear-water to the turbid sites, which along with Bayesian analysis revealed that all A. tenuis communities along the turbidity gradient are on a mixotrophic-heterotrophic feeding strategy scale. We propose that the low δ15N levels at the most turbid site may result from a combination of Acropora physiological limitations (e.g., reduced feeding capacity) and highly variable turbidity levels. In contrast, the higher δ15N at the clear-water site likely results from increased nutrient availability from additional sources such as upwelling. Our findings suggest that increased heterotrophy by coral hosts in turbid coral reef areas is not a universal pattern. Importantly, the loss of carbon in the turbid sites is not supplemented by nitrogen intake, which might suggest that Exmouth Gulfs Acropora communities are more vulnerable to future climate stressors and bleaching.

Funder

Holsworth Wildlife Research Endowment

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3