Understanding the Evolution of Mitochondrial Genomes in the Green Macroalgal Genus Ulva (Ulvophyceae, Chlorophyta)

Author:

Liu Feng,Melton James T.,Wang Hongshu,Wang Jing,Lopez-Bautista Juan M.

Abstract

To gain more insights into the evolution of mitochondrial genomes (mitogenomes or mtDNAs) in the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta), we sequenced seven Ulva mitogenomes from six species as well as one Percursaria mitogenome as outgroup, and compared them with the available Ulva mtDNA data. Our comparative analyses unveiled many novel findings. First, the Ulva mitogenomes shared a total of 62 core genes including 29 protein-coding genes (PCGs), three ribosomal RNA genes (rRNAs), 26 transfer RNA genes (tRNAs), three conserved free-standing open reading frames (orfs), and one putative RNA subunit of RNase P (rnpB). The rrn5 gene previously unrecognized is present in all sequenced ulvalean mitogenomes, which is situated between trnG(ucc) and trnW(cca). Second, the evolution of tRNAs in Ulva mitogenomes is related to different processes, including duplication, transposition, remolding, degeneration, loss and recruitment of tRNAs. The duplication of three tRNAs, i.e., trnT1(ugu), trnI1(gau), and trnM2(cau), was observed in Ulva mitogenomes. Third, the DNA-directed RNA polymerases (rpos), belonging to single-subunit DNA-dependent RNA polymerase (ssRNAP) family, are common in ulvalean mitogenomes. A total of three full-length and 55 split rpos have been detected in these 33 ulvalean mitogenomes. Fourth, six types of group I/II introns are detected at 29 insertion sites which are related to seven host genes (atp1, cox1, cox2, nad3, nad5, rnl, and rns) in these ulvalean mitogenomes. One group IB intron, i.e., intron cox1-214 which carried a GIY-YIG homing endonuclease (GHE), was observed for the first time in Ulva organelle genomes. Finally, phylogenomic analyses based on mitogenome dataset showed that the Ulva was split into two sister clades, representing Ulva lineage I and II, which was consistent to the results based on plastid genome dataset. Our study provides more important findings to better understand the evolution of mitochondrial genome in green algae.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference83 articles.

1. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus.;Adams;Mol. Phylogenet. Evol.,2003

2. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides.;Blomster;Am. J. Bot.,2002

3. The ins and outs of group II introns.;Bonen;Trends Genet.,2001

4. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists.;Burger;Genome Biol. Evol.,2013

5. “Mitochondrial genomes of algae,” in;Burger;Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes: Genomics of Chloroplasts and Mitochondria,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3