Mercury distribution and transfer in mangrove forests in urban areas under simulated rising sea levels

Author:

You Xilin,Sun Lumin,Chen Xiaozheng,Li Yiting,Zheng Jue,Yuan Dongxing,Wu Junjie,Sun Shiyu

Abstract

This study assesses the impact of simulated sea level rise (SLR) on mercury distribution and migration in an urban mangrove wetland on the northern coast of Maluan Bay, Xiamen City, Fujian Province, China. Two adjacent Kandelia obovata mangrove plots with elevations representing current sea level and a 40-cm SLR were examined. Total mercury (THg), methylmercury (MeHg), and mercury isotopes in sediments from different elevations were analyzed to reveal the geochemical behavior of mercury under a simulated 100-year SLR scenario. THg and MeHg distribution in sediments mirrored patterns of biogenic elements (carbon, nitrogen, and phosphorus), suggesting adsorption onto organic matter as the primary entry mechanism. Low-elevation plots showed significantly higher concentrations of THg, MeHg, total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) compared to high-elevation plots. Mercury isotope characteristics indicated that the primary mercury source was anthropogenic emissions from surrounding lands, entering the wetland from both landward and seaward directions. The study highlights the crucial role of mangrove wetlands in mercury pollution control and nutrient cycling under SLR conditions. Results suggest that SLR enhances the retention capacity of mangrove wetlands for THg, MeHg, and nutrients. This research provides a scientific basis for mangrove conservation and restoration, offering new insights into the geochemical behavior of mercury in vegetated intertidal ecosystems in the context of climate change.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3