Integrated multitrophic culture of shrimp Litopenaeus vannamei and tilapia Oreochromis niloticus in biofloc system: A pilot scale study

Author:

Holanda Mariana,Ravagnan Elisa,Lara Gabriele,Santana Gabriel,Furtado Plinio,Cardozo Alessandro,Wasielesky Wilson,Poersch Luis Henrique

Abstract

Shrimp production in biofloc systems generates excess organic matter that must be removed from the system. Due to its ability to consume natural productivity, the integration of tilapia in shrimp culture could help to reduce the levels of total suspended solids in the biofloc system. The present study aimed to evaluate two stocking densities of tilapia in an integrated culture with shrimp Litopenaeus vannamei reared in a pilot-scale biofloc system. Two stocking densities of tilapia were tested, 35 and 65 fish m-3 in a recirculating system with 10 m3 tanks for shrimp culture and 4 m3 for tilapia culture with water recirculation of 965.66 ± 92.83 L h-1 during 78 days. The initial weight of shrimp was 0.9±0.1 g and of tilapia was 7.1±3.2 g. Shrimps were fed according to the feeding table and fish were underfed to stimulate bioflocs consumption. Selected water quality parameters were monitored during the trial. Tilapia densities did not affect shrimp growth (11.5±1.9 g and 10.1±0.7 g for 35 and 65 fish m-3 treatments, respectively). The tilapia presented a FCR lower than 1, proving that bioflocs were consumed by fish. The clarification time was shorter when compared to other studies with shrimp monoculture. Between the treatments, a reduction of 10 hours in the system clarification occurred when lower fish stocking density was used. The results demonstrate the feasibility of integrated shrimp and tilapia culture on a pilot scale, without compromising shrimp productivity.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3