Fleshy Red Algae Mats Influence Their Environment in the Mediterranean Sea

Author:

Schmidt Neele,El-Khaled Yusuf C.,Roßbach Felix I.,Wild Christian

Abstract

In the Mediterranean Sea, the fleshy red alga Phyllophora crispa forms dense mats of up to 15 cm thickness, mainly located on rocky substrates in water depths below 20 m. Because of the observed density of these mats and some first observations, we hypothesize that P. crispa is a yet undescribed ecosystem engineer that provides a multitude of ecological niches for associated organisms along small-scale environmental gradients. Therefore, we conducted an in-situ pilot study in the Western Mediterranean Sea to assess potential influence of the algae mats on the key environmental factors water movement, temperature and light intensity. We comparatively and simultaneously measured in P. crispa mats, in neighboring Posidonia oceanica seagrass meadows, on neighboring bare rocky substrates without algae mats, and in the directly overlying water column. We used several underwater logging sensors and gypsum clod cards. Findings revealed that P. crispa significantly reduced water movement by 41% compared to the overlying water column, whereas water movement was not affected by P. oceanica meadows and bare rocky substrates. Surprisingly, P. crispa increased the water temperature by 0.3°C relative to the water column, while the water temperature in P. oceanica and on bare rocky substrates was reduced by 0.5°C. Light intensity inside the red algae mats was reduced significantly by 69% compared to the water column. This was similar to measured light reduction of 77% by P. oceanica. These findings highlight the strong influence of the dense red algae mats on some key environmental factors. Their influence is obviously similar or even higher than for the well-known seagrass ecosystem engineer. This may be a factor that facilitates associated biodiversity similarly as described for P. oceanica.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3